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Quantum Logic for Quantum Computers†

Mladen Pavičić1
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The following results obtained within a project of finding the algebra of states
in a general-purpose quantum computer are reported: (1) All operations of an
orthomodular lattice, including the identity, are fivefold-defined; (2) there are
nonorthomodular models for both quantum and classical logics; (3) there is a four-
variable orthoarguesian lattice condition which contains all known orthoarguesian
lattice conditions including six- and five-variable ones. Repercussions to quantum
computers operating as quantum simulators are discussed.

1. INTRODUCTION

A computer is a computational device in which 2 3 2 unitary matrices
called logical gates act on elementary bits .0& 5 (1, 0) and .1& 5 (0, 1) and
on bits obtained by such operations. A classical gate is, for example, a NOT
gate, which flips bits in the following way: NOT.0& 5 NOT(1, 0) 5 .1& and
NOT.1& 5 NOT(0, 1) 5 .0& and which can be represented as

NOT 5 10 1
1 02 (1)

A quantum gate which is characteristic of existing experimental hardware is
the controlled NOT gate, which acts on two qubits in a conditional way [as
simple NOT gate on the second (target) qubit provided the first (control)
qubit is 1] as follows:
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CNOT 5 1
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

2 (2)

The transformation CNOT—and all other classical operations trans-
formed to quantum gates by making them controlled ones—are obviously
unitary, they preserve superpositions, and they cannot be decomposed into
a tensor product of two single-bit transformations, but without qubit rotations
and without phase shifts,

1 cos a sin a
2sin a cos a2, 1eia 0

0 e2ia2, 1eia 0
0 eia2 (3)

genuine quantum tasks cannot be processed. For example, even the simplest
problem of a photon passing two successive polarizers (quantum Malus law)
could not be solved. On the other hand, these nonclassical rotations and
phase shifts essential for quantum computers depend on classical continuous
variables and this causes problems which focus on later.

An even more essential difference between classical and quantum com-
puters is contained in elementary information units themselves. A classical
unit is always either 0 or 1 (one bit). A quantum unit—called a qubit—is a
two-state quantum system. We describe the system by a unit vector in the
Hilbert space *2 over the field of complex numbers. We denote the two
orthogonal states by .0& 5 (1, 0) and .1& 5 (0, 1). The states make an
orthogonal basis for *2. In a quantum computer we deal with a large number
n of qubits which build up a composite Hilbert space * 5 *2 ^ . . . ^ *2.
The computational basis, i.e., the basis of this space, consists of the following
2n vectors: .00 ??? 00&, .00 ??? 01&, . . . , .11 ??? 11&, where, e.g., .00& means
.0& ^ .0&. Classical bits correspond to quantum states: i1i2 ??? in } .in& [
.i1 ??? in&.

To compute the function f : i1i2 . . . in ° f(i1, . . . , in) means to let the
corresponding states evolve according to the time evolution unitary opera-
tor U:

.i1i2 ??? in& ° U.i1i2 ??? in& 5 . f(i1, . . . , in)& (4)

More explicitly,

.Cf & 5 exp 12
i
" # * dt2 .Co& 5 U.Co& (5)

which follows directly from the Schrödinger equation. The unitarity of U
assures reversibility and therefore prevents energy dissipation. This can be
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achieved with classical devices as well, but only at the cost of exponentially
growing hardware or exponentially increasing time. The reason is simple: n
classical states describing a system in a classical computer can only be
specified by ascribing values to all 2n basis states. Quantum computers, on
the other hand, achieve the aim as well as a parallel way of computing—which
is their most attractive feature—by using superposition, which puts n quantum
states in a superposition of all 2n basis states in one step. Again, for a parallel
computation a classical computer would need to either exponentially growing
hardware or exponentially increasing time.

Consider, for example, the following state of two particles, known as
the entangled state (Pavic̆ić and Summhammer, 1994; Pavic̆ić, 1995) of the
particles, which can then also be used for a teleportation of states or Bell
experiments or quantum cryptography (we omit the normalization factors
throughout):

.00& 1 .11& (6)

Here neither of the two qubits has a definite state: the state of the system is
not a tensor product of the states, and we cannot find a1, a2, b1, b2 such that

(a1.0& 1 b1.1&) ^ (a2.0& 1 b2.1&) 5 .00& 1 .11&

since

(a1.0& 1 b1.1&) ^ (a2.0& 1 b2.1&)

5 a1a2.00& 1 a1b2.01& 1 b1a2.10& 1 b1b2.11&

and a1b2 5 0 implies that either a1a2 5 0 or b1b2 5 0. These states represent
situations that have no classical counterpart. These are also states that provide
exponential growth of quantum state spaces with the number of particles.

To see this let us consider the following superposition of n qubits:

o
1

i1i2???in50
.i1i2 ??? in& (7)

Applying the linear unitary operation which computes f, from Eq. (4), to this
state yields

o
1

i1i2,...,in50
.f(i1i2 ??? in)& (8)

Hence, U computes f parallelly on all the 2n possible inputs i.
To achieve such parallel computing in a realistic computer, we start with

an initial state .i& which corresponds to an “input” to the computation. We
then perform elementary operations on the system using the quantum gates
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defined above. The operations correspond to the computational steps in the
computation, just like logical gates are the elementary steps in classical
computers, and are performed on an isolated system, so the evolution can
always be described by a unitary matrix operating on the state of the system.

Therefore we can always implement a unitary operator which is given
by the Hamiltonian of a given process or state of a system as a set of
instructions on how to transform input states in time. But the crucial problem
is initial states themselves. Can we write down a general input state

.C0& 5 .i1i2 ??? in& (9)

by means of quantum gate operations over elementary input propositions so
as to correspond to a general wave function of the Hilbert space which
describes the input state? The answer is currently in the negative. There is
no known finite and definite recipe for such a correspondence. But in recent
years much has been achieved to narrow the gap between an algebra of
elementary propositions (corresponding to pure states) and the Hilbert space
description. Let us consider the most important details in a possible construc-
tion of a quantum machine language which could mimic a quantum system
and therefore directly correspond to its Hilbert space representation.

In Section 3 we show (using only lattice theory) that both a proper
quantum logic of propositions and a proper classical logic of propositions
have models that are not even orthomodular. Therefore in both classical and
quantum computers one must use algebras instead. In Section 2 we analyze
such an algebra—orthomodular lattice—which is usually considered to be
an algebra underlying quantum measurement and a Hilbert space representa-
tion, and show that all its binary operations are ambiguous and that bare
orthomodular lattices cannot be employed in quantum computers. In Section
4 we show how one can construct Hilbert lattices which enable a direct
representation in a Hilbert space of quantum computational simulation and
provide a lattice for the purpose, which at the same time eliminates the so-
called 4-dim postulate. We also show that quantum theory is at least as
incompatible with the strong form of the Church–Turing principle as any
classical theory, contrary to Deutsch’s claim (Deutsch, 1985).

2. ALL OPERATIONS IN ORTHOMODULAR LATTICES ARE
AMBIGUOUS

The Birkhoff–von Neumann requirement (Kalmbach, 1983)

a →i b ⇒ a # b, i 5 1, . . . , 5 (10)

where a →1 b 5
def

a8 ø (a ù b), a →2 b 5
def

b8 →1 a8, a →3 b 5
def

(a8 ù b) ø
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(a8 ù b8) ø (a →1 b), a →4 b 5
def

b8 →3 a8, and a →5 b 5
def

(a ù b) ø (a8 ù
b) ø (a8 ù b8), not only holds in every orthomodular lattice, but also amounts
to the orthomodularity itself in the sense that condition (10) added to an
ortholattice makes it orthomodular (Pavičić, 1987)

Since in any orthomodular lattice (Pavičić and Megill, 1998a)

a ø b 5 (a →i b) →i (((a →i b) →i (b →i a)) →i a), i 5 1, . . . , 5

(11)

this means that all operations (fivefold negation follows trivially) in an
orthomodular lattice are fivefold-definable.

At first sight it still seems that one can prove a conjecture that the
relation of equation in the lattice is uniquely definable. The reasons for such
a conjecture are the following. All five quantum implications a →i b collapse
to the classical one a →0 b 5

def
a8 ø b in a distributive lattice. Even more,

a →i b 5 a →j b, i Þ j, i, j 5 0, . . . , 5 (12)

makes an ortholattice distributive (Pavičić, 1987). On the other hand,

a →0 b ⇒ a # b (13)

also makes an ortholattice distributive (Pavičić, 1998). In any orthomodular
lattice we have

a }i b 5 a [ b, i 5 1, . . . , 5 (14)

where a }i b5
def

(a →i b) ù (b →i a) and a [ b 5
def

(a ù b) ø (a8 ù b8). The
identity operation a [ b reduces to a [0 b 5

def
(a8 ø b) ù (b8 ø a) in a dis-

tributive theory and since a [ b is an equivalence relation in an othomodular
lattice and a [0 is an equivalence relation in a distributive lattice, we could
hope that the conjecture does hold, i.e., that the relation of equation ‘5’ in
orthomodular lattices can be uniquely defined and connected to the operation
of identity by the rule

a [ b 5 1 ⇔ a 5 b (15)

which is known to make an ortholattice orthomodular (Pavičić, 1993) and
which can be compared to the rule

a [0 b 5 1 ⇔ a 5 b (16)

which makes an ortholattice distributive (Pavičić, 1998).
Unfortunately, the conjecture does not hold. The reason is simple. In a

distributive lattice a →i b, i 5 1, . . . , 5, all merge to a →0 b and therefore
(a →i b) ù (b →j a), i Þ j, i, j 5 1, . . . , 5, must merge to a [0 b 5

def
(a →0
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b) ù (b →0 a). But in an orthomodular lattice the former biimplications
(a →i b) ù (b →j a) are equal—depending on the values of i and j—to the
following five identities: a [ b, a [1 b 5

def
(a ø b8) ù (a8 ø (a ù b)), a [4

b 5
def

(a ø b8) ù (b ø (a8 ù b8)), a [3 b 5
def

(a8 ø b) ù (a ø (a8 ù b8)),
and a [3 b 5

def
(a8 ø b) ù (b8 ø (a ù b)) as given in the Table I (Pavičić

and Megill, 1999).
The expressions a [i b, i 5 1, . . . , 4, are all asymmetrical and at first

we would think it would be inappropriate to name them identities. Also, a [i

b 5 a [j b when added to an ortholattice does not make it even orthomodular,
but apparently weakly distributive (see next section), as opposed to Eq.
(12). Nevertheless, we are able to prove the following theorem (Pavičić and
Megill, 1999).

Theorem 2.1. An ortholattice in which

a [i b 5 1 ⇒ a 5 b, i 5 1, . . . , 4 (17)

holds is an orthomodular lattice and vice versa.

Hence, putting together Eq. (15) and Eq. (17), we have an indication
that the relation of equivalence which establishes a connection between
quantum logic and its models might turn out to be based on several different
operations of identity at the same time, thus making a direct evaluation of
elementary logical propositions impossible. However, as we will see in the
next section, there is an even more important reason why we cannot use
proper quantum logic to evaluate quantum propositions, and this is that a
proper quantum logic is not orthomodular. An even bigger surprise is the
result that even standard classical logic need not be orthomodular.

3 NONORTHOMODULAR MODELS FOR BOTH QUANTUM
AND CLASSICAL LOGICS

A crucial difference between logics and lattices as their models is that
properties that play a decisive role in lattices do not play such a role in logics

Table I. Products (a →i b) ù (b →j a), i 5 0, . . , 5 (Rows), j 5 0, . . , 5 (Columns)a

i j b →0 a b →1 a b →2 a b →3 a b →4 a b →5 a

a →0 b a [0 b a [4 b a [3 b a [2 b a [1 b a [ b
a →1 b a [1 b a [ b a [ b a [ b a [1 b a [ b
a →2 b a [2 b a [ b a [ b a [2 b a [ b a [ b
a →3 b a [3 b a [ b a [3 b a [ b a [ b a [ b
a →4 b a [4 b a [4 b a [ b a [ b a [ b a [ b
a →5 b a [ b a [ b a [ b a [ b a [ b a [ b

a “Identities” a [i b, i 5 1, . . . , 4, are asymmetrical.
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at all. To explain this difference, let us consider the orthomodularity and
distributivity properties. When we add the orthomodularity (distributivity)
property to an ortholattice it becomes an orthomodular (distributive) lattice.
We can compare what happens in a logic by looking at a lattice we obtain
by mapping logical axioms £A to an ortholattice, where they take the form
a 5 1; here a 5 v(A) and v is a morphism from the logic to the lattice. As
we have shown (Pavičić and Megill, 1998b), the property (a ø (a8 ù (a ø
b))) [ (a ø b) 5 1 that we obtain by mapping the logical formula for
“orthomodularity” £(A ∨ (¬A ∧ (A ∨ B)) [ (A ∨ B) into an ortholattice is
true in all ortholattices. On the other hand, as we have shown (Pavičić and
Megill, 1999), (a ù (b ø c)) [0 ((a ù b) ø (a ù c)) 5 1, which we obtain
by an analogous mapping of the distributivity, is true in all weakly distributive
lattices which are not even orthomodular.

The reason for such different structures of logics as opposed to their
models lies in completely different syntax of a 5 1 lattice equations (which
correspond to logical wwf’s) and a 5 b lattice equations. For example,
another way of expressing orthomodularity is £A ∨ (B ∧ (£A ∨ £B)) [ A ∨
B, whose lattice mapping is ((a →1 b) →0 b) [ (a ø b) 5 1, which, when
added to an ortholattice, makes it weakly orthomodular. This means that the
“orthomodularity” from quantum logic sometimes maps to an ortho-property
and sometimes to a weakly orthomodular property, but never to an orthomodu-
lar property. The reader can find details on weakly orthomodular logics and
lattices in Pavičić and Megill (1998b, 1999).

Classical logic also does not necessarily map its syntactical structure to
its model. More precisely, it does if valuated on {0,1} or if valuated by
classical Kolmogorovian probability functions. Therefore, our results show
that for classical logics there are nonorthomodular models which do not use
{0,1} valuation of propositions. Since all standard applications of classical
logic invoke exactly such valuation, the above discovery most probably
will not have serious repercussions for classical reasoning and computing.
Quantum logic as well as orthomodular lattices, on the other hand, in principle
cannot ascribe definite values to their propositions and cannot have {0, 1}
valuation at all. This might have serious repercussions for quantum computers,
as we will see in the next section. The reader can find detailed soundness
and completeness proofs for both quantum and classical logics in Pavičić
and Megill (1999).

4 QUANTUM ALGEBRA FOR QUANTUM COMPUTERS

Computational instructions to a quantum computer for handling inputs
to give desired outputs have been simply called quantum logic (Christianson
et al., 1998). The latter logic, however, cannot be a proper logic, especially



820 Pavičić

if we want it to be a general machine language capable of solving and
simulating any given Hamiltonian. Recently devised algorithms such as fac-
torization of big numbers in cryptography (Shor, 1997) or searching big
databases in networks (Grover, 1997) are certainly ingenious, but do not use
any general quantum algebra. They make direct use of hardware-prepared
and hardware-processed input states. In order to build up a general quantum
algebra, input states must satisfy additional conditions which do not result
from qubit superposition, entanglement, and rotation and phase shift control.
Algebraically these conditions amount to an extension of orthomodular lat-
tices which we call the Hilbert lattice (HL) and will consider in this section
as a structure isomorphic to a Hilbert space description of an arbitrary quan-
tum system.

Classical computer states obey all the conditions required by the Boolean
algebra (distributivity, etc.). As opposed to this, quantum computer states
which appear in the known algorithms (e.g., Shor’s and Grover’s) do not
obey all the conditions required by HL. On the other hand, it is still unclear
how one can implement HL conditions in a quantum computer. So, even the
Schrödinger equation, describing the evolution of states in a quantum com-
puter, must be simulated by a specially designed approximative algorithm
(Boghosian and Taylor, 1998), Such a quantum computer is therefore still
not what it could eventually be: a quantum simulator which mimics quantum
systems by giving precise instructions on how to produce input states, how
to evolve them, and how to read off the final states (Feynman, 1982, 1986).
Let us analyze conditions which quantum states should obey in order to
enable full quantum computing, i.e., proper quantum mathematics.

In order to enable an isomorphism between an orthocomplemented ortho-
modular lattice and the corresponding Hilbert space we have to add further
conditions to the lattice. The conditions correspond to the essential properties
of any quantum system such as superposition. Combining Holland (1995)
and Ivert and Sjödin (1978), we can state the conditions as follows:

Definitional (the first 3) and Additional Conditions for a Hilbert Lattice

• Completeness: The meet and join of any subset of a lattice always
exist.

• Atomicity: Every nonzero element in HL majorizes an atom which
is a nonzero element aPHL with 0 , b # a only if b 5 a.

• Superposition principle: (Atom c is a superposition of atoms a and
b if c Þ a, c Þ b, and c # a ø b.)
1. Given two different atoms a and b, there is at least one other atom
c, c Þ a and c Þ b, that is a superposition of a and b.
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2. If the atom c is a superposition of the distinct atoms a and b, then
a is a superposition of b and c.

• Unitary operators: Given any two orthogonal atoms a and b in HL,
there is a unitary operator U such that U(a) 5 b.

• Infinite orthogonality: HL contains a countably infinite sequence of
orthogonal elements.

It is well known that if the HL is of dimension $4, then there exists a
field F and a vector space E over F such that HL is orthoisomorphic to the
lattice LE of E-closed subspaces of E.

In an “orthomodular approach” the condition $4 must be postulated
(Maczyński, 1972). But if we found a condition which must be satisfied in
HL and which requires at least four nonequivalent variables, then the condition
would be automatically satisfied. A natural idea is to look for conditions
equivalent to those in Eqs. (15) and (16) with new “full quantum identities”
which would solve the ambiguity problem of the relation of equality ‘5’
and of lattice operations. The following definitions do the job.

Definition 4.1:

a [
c

i b 5
def

((a →i c) ù (b →i c)) ø ((a8 →i c) ù (b8 →i c)); i 5 1, 3, (18)

a [
c

i b 5
def

((c →i a) ù (c →i b)) ø ((c →i a8) ù (c →i b8)); i 5 2, 4, (19)

a [
c,d

i b 5
def

a [
d

i b ø (a [
d

i c ù b [
d

i c) i 5 1, . . . , 4. (20)

Theorem 4.2. An ortholattice to which

a [
c

i b 5 1 ⇔ a →i c 5 b →i c, i 5 1, 3, (21)

a [
c

i b 5 1 ⇔ c →i a 5 c →i b, i 5 2, 4 (22)

are added is a variety of OML which fails in lattice L̂ (Fig. 1a) for i 5 1,
2, 3, 4.

Theorem 4.3. An ortholattice to which

a [
c,d

i b 5 1 ⇔ a →i d 5 b →i d, i 5 1, 3 (23)

is added is a variety of OML which fails in lattice L38 (Fig. 1b).
The reader can check that the equations really fail in the quoted lattices

(and million of others with up to 50 blocks) after compiling lattice.c2 written
in C (McKay, Megill, and Pavičić, 2000).

2 ftp://ftp.shore.net/members/ndm/quantum-logic.
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Fig. 1. (a) L̂ from Godowski and Greechie (1984); (b) L38 from Pavičić and Megill (1999).

The new identities [
c

1 and [
c,d

1 when equal to one are relations of equiva-
lence. The previous theorems narrow down the ambiguity of operations →i

(and therefore of relations # and 5 as well) to two. The role of the Sasaki
projection fab 5 (a →1 b8)8 of b on a in the the covering property which
is a consequence of the superposition principle then apparently resolves the
ambiguity completely.

In the end we are able to prove that the previous theorems follow from
the following one (Megill and Pavičić, 2000).

Definition 4.4. A 3OA is an OML in which the following additional
condition is satisfied:

(a →1 c) ù (a [
c

1 b) # (b →1 c) (24)

A 4OA is an OML in which the following additional condition is satisfied:

(a →1 d ) ù (a [
c,d

1 b) # (b →1 d ) (25)

Theorem 4.5. Every 4OA is a 3OA, but there exist 3OAs that are not
4OAs. 4OA fails in L38 and L̂ and 3OA only in L̂ (Fig. 1a). Equation (22),
i 5 1, follows from Eq. (24), and Eq. (23), i 5 1, follows from Eq. (25).

The 4OA law (25) is equivalent to the orthoarguesian law discovered
by A. Day (cf. Godowski and Greechie, 1984). Thus the orthoarguesian law
may be expressed by an equation with only four variables instead of six. In
addition, we are able to prove that apparently all known orthoarguesian
derivates follow from, or are identical to either 4OA or 3OA laws given
above (Megill and Pavičić, 2000).

We therefore obtained the result that HL must be of dimension $ 4 and
that therefore, with the aforecited additional conditions, is orthoisomorphic
to the lattice of subspaces of a Hilbert space. On the other hand, as a
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consequence of the aforestated additional conditions, we obtain that the
number of atoms of a lattice (pure states) of any Hilbert space of dimension
$3 must be infinite (Ivert and Sjödin, 1978). This is in a direct relation to
a coordinatization of Hilbert spaces. For example, if we want to have a
complete description of a spin-1 system, we cannot achieve this in the spin
space alone. We have to include the orientations of preparations and measure-
ments in space (otherwise we would not have even the Malus law) in our
description and these are continuous variables. In a qubit preparation within
a quantum computer the continuous variable is the angle a in Eq. (3). Thus
the lattice is infinite although the number of input qubits and the unitary
transformation needed to calculate the result of a measurement remains finite-
dimensional (Deutsch, 1985). This invalidates Deutsch’s claim: “[‘Quantum’
Church–Turing principle] is so strong that it is not satisfied by Turing’s
machine in classical physics. Owing to continuity of classical dynamics, the
possible states of a classical system necessarily form a continuum. Yet there
are only countably many ways of preparing a finite input for [a quantum Turing
machine]. Consequently [it] cannot perfectly simulate any classical system.”

This distinction does not hold because, as we have seen, a continuum
appears with quantum spin systems as well and on the other hand preparing
a finite input does not contradict the existence of a continuum of possible
states within a lattice. Infinite number of states does not mean an infinite
number of calculated spin projections for a quantum system or positions and
momentoms for a classical system. The infinity contained in the continuous
variables is actually not a problem, but an essential feature which enables
the Hilbert space representation with the help of M. P. Solèr’s recent discovery:
we need not postulate (as was considered necessary until several years ago)
a complex (or real or quaternionic) field for our Hilbert space—it follows
from the infinite orthogonality of the lattice (Holland, 1995).

5 CONCLUSION

States of general-purpose quantum computer must, apart from conditions
imposed by the standard quantum logical gates, satisfy additional conditions
given in Section 4 and required to yield a general algebra of the states. One
of the conditions is also the four-variable orthoarguesian law given by Eq.
(25) which gives all known orthoarguesian equations (including six-variable
ones) and which eliminates the so-called 4-dim lattice postulate. The obtained
algebra, which is a Hilbert lattice, is then isomorphic to the subspaces of the
Hilbert spaces which characterize general computation algorithms. Proposi-
tions a, b, c of the lattice are therefore connected to probabilistic outcomes
of a calculation of an observable A by means of m(a) 5 ^C.PA.C&, where
PA,E (E is a Borel set) is a projector of A, m is the pure full [m(a) # m(b)
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⇒ a # b] strongly convex (mj P 6 & ( cj 5 1 ⇒ ( cjmj P 6) probability
measure on HL: m: HL ° [0, 1], and we obtain C from the Gleason theorem:
if m is a pure probability measure, then there exists a vector C P * which
satisfies the above m(a). The mean value of the operator A is then given by the
spectral theorem. However, there are several obstacles to a direct calculation of
this mean value on a quantum computer.

In Section 3 we showed that no calculation can be carried out within
propositional quantum logic since the latter can be modeled with a nonor-
thomodular model. (In addition, we show that the standard classical logic
has a nonorthomodular model, too, and explain why this is of no consequence
for classical computers.)

In Section 2 we showed that a bare orthomodular lattice cannot be used
as a satisfactory algebra of states because all operations in the lattice are
fivefold-defined, including the identity and the relation of equivalence.

Taken together, a quantum computer could simulate quantum systems
as described by infinite dimensional Hilbert space, if one found a way how
to substitute Hilbert lattice equations for the conditions from Section 4.
Alternative route would be to formulate a description of quantum systems
by means of finite dimensional Hilbert space.
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